|
1256 |
codeforces#P1676G White-Black Balanced Subtrees
|
0 / 0 |
4 |
|
1233 |
codeforces#P1680F Lenient Vertex Cover
|
0 / 0 |
10 |
|
1227 |
codeforces#P1681F Unique Occurrences
|
0 / 0 |
8 |
|
1223 |
codeforces#P1682D Circular Spanning Tree
|
0 / 0 |
7 |
|
1222 |
codeforces#P1682E Unordered Swaps
|
0 / 0 |
10 |
|
1193 |
codeforces#P1689C Infected Tree
|
0 / 0 |
5 |
|
1178 |
codeforces#P1691F K-Set Tree
|
0 / 0 |
9 |
|
1168 |
codeforces#P1693B Fake Plastic Trees
|
0 / 0 |
5 |
|
1158 |
codeforces#P1695D1 Tree Queries (Easy Version)
|
0 / 0 |
8 |
|
1157 |
codeforces#P1695D2 Tree Queries (Hard Version)
|
0 / 0 |
8 |
|
1150 |
codeforces#P1696F Tree Recovery
|
0 / 0 |
10 |
|
1137 |
codeforces#P1698E PermutationForces II
|
0 / 0 |
8 |
|
1111 |
codeforces#P1702G1 Passable Paths (easy version)
|
0 / 0 |
6 |
|
1110 |
codeforces#P1702G2 Passable Paths (hard version)
|
0 / 0 |
7 |
|
1082 |
codeforces#P1706E Qpwoeirut and Vertices
|
0 / 0 |
8 |
|
1079 |
codeforces#P1707C DFS Trees
|
0 / 0 |
9 |
|
1078 |
codeforces#P1707D Partial Virtual Trees
|
0 / 0 |
10 |
|
1069 |
codeforces#P1709E XOR Tree
|
0 / 0 |
9 |
|
1068 |
codeforces#P1709F Multiset of Strings
|
0 / 0 |
9 |
|
1064 |
codeforces#P1710D Recover the Tree
|
0 / 0 |
10 |
|
1054 |
codeforces#P1712F Triameter
|
0 / 0 |
10 |
|
1042 |
codeforces#P1714F Build a Tree and That Is It
|
0 / 0 |
6 |
|
1041 |
codeforces#P1714G Path Prefixes
|
0 / 0 |
5 |
|
1018 |
codeforces#P1718D Permutation for Burenka
|
0 / 0 |
10 |
|
1009 |
codeforces#P1720D1 Xor-Subsequence (easy version)
|
0 / 0 |
6 |
|
1008 |
codeforces#P1720D2 Xor-Subsequence (hard version)
|
0 / 0 |
9 |
|
1002 |
codeforces#P1721E Prefix Function Queries
|
0 / 0 |
8 |
|
989 |
codeforces#P1725E Electrical Efficiency
|
0 / 0 |
9 |
|
985 |
codeforces#P1725I Imitating the Key Tree
|
0 / 0 |
10 |
|
984 |
codeforces#P1725J Journey
|
0 / 0 |
9 |
|
977 |
codeforces#P1726D Edge Split
|
0 / 0 |
7 |
|
905 |
codeforces#P1738D Permutation Addicts
|
0 / 0 |
6 |
|
903 |
codeforces#P1738F Connectivity Addicts
|
0 / 0 |
9 |
|
897 |
codeforces#P1739D Reset K Edges
|
0 / 0 |
6 |
|
890 |
codeforces#P1740E Hanging Hearts
|
0 / 0 |
6 |
|
887 |
codeforces#P1740H MEX Tree Manipulation
|
0 / 0 |
10 |
|
882 |
codeforces#P1741D Masha and a Beautiful Tree
|
0 / 0 |
4 |
|
854 |
codeforces#P1746D Paths on the Tree
|
0 / 0 |
6 |
|
840 |
codeforces#P1748E Yet Another Array Counting Problem
|
0 / 0 |
8 |
|
833 |
codeforces#P1749F Distance to the Path
|
0 / 0 |
10 |
|
791 |
codeforces#P1761E Make It Connected
|
0 / 0 |
9 |
|
788 |
codeforces#P1761G Centroid Guess
|
0 / 0 |
10 |
|
783 |
codeforces#P1762E Tree Sum
|
0 / 0 |
10 |
|
775 |
codeforces#P1763F Edge Queries
|
0 / 0 |
10 |
|
769 |
codeforces#P1764F Doremy's Experimental Tree
|
0 / 0 |
9 |
|
740 |
codeforces#P1767E Algebra Flash
|
0 / 0 |
9 |
|
739 |
codeforces#P1767F Two Subtrees
|
0 / 0 |
10 |
|
728 |
codeforces#P1770E Koxia and Tree
|
0 / 0 |
9 |
|
721 |
codeforces#P1771D Hossam and (sub-)palindromic tree
|
0 / 0 |
7 |
|
719 |
codeforces#P1771F Hossam and Range Minimum Query
|
0 / 0 |
9 |
|
717 |
codeforces#P1773B BinCoin
|
0 / 0 |
8 |
|
702 |
codeforces#P1774E Two Chess Pieces
|
0 / 0 |
6 |
|
699 |
codeforces#P1774G Segment Covering
|
0 / 0 |
10 |
|
678 |
codeforces#P1776M Parmigiana With Seafood
|
0 / 0 |
10 |
|
673 |
codeforces#P1777D Score of a Tree
|
0 / 0 |
6 |
|
672 |
codeforces#P1777E Edge Reverse
|
0 / 0 |
8 |
|
671 |
codeforces#P1777F Comfortably Numb
|
0 / 0 |
9 |
|
666 |
codeforces#P1778E The Tree Has Fallen!
|
0 / 0 |
9 |
|
665 |
codeforces#P1778F Maximizing Root
|
0 / 0 |
10 |
|
659 |
codeforces#P1779F Xorcerer's Stones
|
0 / 0 |
9 |
|
645 |
codeforces#P1781F Bracket Insertion
|
0 / 0 |
10 |
|
644 |
codeforces#P1781G Diverse Coloring
|
0 / 0 |
10 |
|
635 |
codeforces#P1783G Weighed Tree Radius
|
0 / 0 |
10 |
|
619 |
codeforces#P1787G Colorful Tree Again
|
0 / 0 |
10 |
|
611 |
codeforces#P1788F XOR, Tree, and Queries
|
0 / 0 |
9 |
|
599 |
codeforces#P1790F Timofey and Black-White Tree
|
0 / 0 |
7 |
|
572 |
codeforces#P1794E Labeling the Tree with Distances
|
0 / 0 |
9 |
|
566 |
codeforces#P1795F Blocking Chips
|
0 / 0 |
9 |
|
560 |
codeforces#P1796E Colored Subgraphs
|
0 / 0 |
9 |
|
555 |
codeforces#P1797D Li Hua and Tree
|
0 / 0 |
6 |
|
553 |
codeforces#P1797F Li Hua and Path
|
0 / 0 |
10 |
|
529 |
codeforces#P1800G Symmetree
|
0 / 0 |
8 |
|
524 |
codeforces#P1801E Gasoline prices
|
0 / 0 |
10 |
|
508 |
codeforces#P1805D A Wide, Wide Graph
|
0 / 0 |
6 |
|
507 |
codeforces#P1805E There Should Be a Lot of Maximums
|
0 / 0 |
8 |
|
500 |
codeforces#P1806E Tree Master
|
0 / 0 |
8 |
|
470 |
codeforces#P1810F M-tree
|
0 / 0 |
10 |
|
442 |
codeforces#P1815B Sum Graph
|
0 / 0 |
7 |
|
425 |
codeforces#P1819C The Fox and the Complete Tree Traversal
|
0 / 0 |
9 |
|
423 |
codeforces#P1819E Roads in E City
|
0 / 0 |
10 |
|
408 |
codeforces#P1822F Gardening Friends
|
0 / 0 |
5 |
|
400 |
codeforces#P1823F Random Walk
|
0 / 0 |
10 |
|
398 |
codeforces#P1824B1 LuoTianyi and the Floating Islands (Easy Version)
|
0 / 0 |
6 |
|
397 |
codeforces#P1824B2 LuoTianyi and the Floating Islands (Hard Version)
|
0 / 0 |
8 |
|
396 |
codeforces#P1824C LuoTianyi and XOR-Tree
|
0 / 0 |
9 |
|
394 |
codeforces#P1824E LuoTianyi and Cartridge
|
0 / 0 |
10 |
|
384 |
codeforces#P1827B1 Range Sorting (Easy Version)
|
0 / 0 |
7 |
|
381 |
codeforces#P1827D Two Centroids
|
0 / 0 |
10 |
|
380 |
codeforces#P1827E Bus Routes
|
0 / 0 |
10 |
|
368 |
codeforces#P1830A Copil Copac Draws Trees
|
0 / 0 |
4 |
|
365 |
codeforces#P1830D Mex Tree
|
0 / 0 |
10 |
|
347 |
codeforces#P1833G Ksyusha and Chinchilla
|
0 / 0 |
6 |
|
328 |
codeforces#P1837E Playoff Fixing
|
0 / 0 |
8 |
|
296 |
codeforces#P1842F Tenzing and Tree
|
0 / 0 |
9 |
|
290 |
codeforces#P1843C Sum in Binary Tree
|
0 / 0 |
3 |
|
289 |
codeforces#P1843D Apple Tree
|
0 / 0 |
4 |
|
287 |
codeforces#P1843F1 Omsk Metro (simple version)
|
0 / 0 |
6 |
|
286 |
codeforces#P1843F2 Omsk Metro (hard version)
|
0 / 0 |
8 |
|
278 |
codeforces#P1844G Tree Weights
|
0 / 0 |
10 |
|
245 |
codeforces#P1849F XOR Partition
|
0 / 0 |
10 |